Instituto del Fondo Nacional de la Vivienda para los Trabajadores (INFONAVIT) es una institución mexicana tripartita donde participa el sector obrero, el sector empresarial y el gobierno, dedicada a otorgar crédito para la obtención de vivienda a los trabajadores y brindar rendimientos al ahorro que está en el Fondo Nacional de Vivienda para las pensiones de retiro.
Fue fundada en mayo de 1972 por el entonces presidente Luis Echeverría Álvarez.
viernes, 11 de junio de 2010
aportaciones para el fondo de retiro.
Las Administradoras de Fondos para el Retiro, (AFORES), son instituciones financieras privadas de México, que administran fondos de retiro y ahorro de los trabajadores voladores y afiliados al Instituto Mexicano del Seguro Social y recientemente de los afiliados al Instituto de Seguridad y Servicios Sociales de los Trabajadores al Servicio del Estado. Fueron creadas por la Ley del seguro social de 1997 e iniciaron su operación el 1° de Julio del mismo año. Su funcionamiento está regulado por la Comisión Nacional del Sistema de Ahorro para el Retiro, (CONSAR) y autorizado por la Secretaría de Hacienda y Crédito Público.[1] Su finalidad es que todos los trabajadores puedan contar con una pensión al momento de su retiro, cuando los recursos de la AFORE no son suficientes para la pensión, el trabajador recibe una pensión garantizada del gobierno mexicano, equivalente a 1 salario mínimo del Distrito Federal por día y que se actualizará el mes de febrero todos los años conforme al INPC.
retencion del IMSS.
Las retenciones del IMSS se calculan en función al salario integrado, que es el salario asignado al trabajador por el factor de integracion ( 1.0452 ) el cual ahora es configurable en parametros del sistema para que pongas el factor de integración correspondiente a tu empresa y en la nueva versión 1.6.0 en mantenimiento de tablas del sistema tiene las tablas de factor de integración por año de antiguedad del trabajador, la antiguedad se determina en base a la fecha de nómina
ISR
El impuesto sobre la renta o ISR es un impuesto que grava los ingresos de las personas, empresas, u otras entidades legales. Normalmente se calcula como un porcentaje variable de los ingresos de la persona física o jurídica sujeta a impuestos.
Tipos de impuestos sobre la renta:
Progresivo: cuando el porcentaje aplicado a los ingresos de una persona aumenta con dichos ingresos.
Plano: cuando el porcentaje aplicado a los ingresos de una persona es constante, ("flat tax").
Regresivo: cuando el porcentaje aplicado a los ingresos de una persona disminuye con dichos ingresos
Cuando el impuesto sobre la renta se aplica a una compañía, se suele llamar impuesto a las empresas o impuesto sobre los beneficios. Los impuestos a las empresas suelen gravar el beneficio de las empresas (la diferencia entre los ingresos y los gastos, con algunas deducciones), mientras que los aplicados a las personas físicas suelen gravar los ingresos (con algunas deducciones).
Tipos de impuestos sobre la renta:
Progresivo: cuando el porcentaje aplicado a los ingresos de una persona aumenta con dichos ingresos.
Plano: cuando el porcentaje aplicado a los ingresos de una persona es constante, ("flat tax").
Regresivo: cuando el porcentaje aplicado a los ingresos de una persona disminuye con dichos ingresos
Cuando el impuesto sobre la renta se aplica a una compañía, se suele llamar impuesto a las empresas o impuesto sobre los beneficios. Los impuestos a las empresas suelen gravar el beneficio de las empresas (la diferencia entre los ingresos y los gastos, con algunas deducciones), mientras que los aplicados a las personas físicas suelen gravar los ingresos (con algunas deducciones).
salario
El salario es el pago que recibe de forma periódica un trabajador de mano de su empleador a cambio de que éste trabaje durante un tiempo determinado para el que fue contratado produzca una determinada cantidad de mercancías equivalentes a ese tiempo de trabajo. El empleado recibe un salario a cambio de poner su trabajo a disposición del jefe, siendo éstas las obligaciones principales de su relación contractual.
Cuando los pagos son efectuados en forma diaria, recibe el nombre de jornal (de jornada). Si es entre las 12 será jornal matinal y si es pasadas las 12 será diurno.
Es una contraprestación principalmente en dinero, si bien puede contar con una parte en especie evaluable en términos monetarios, que recibe el trabajador del empleador por causa del contrato de trabajo. Siempre debe existir una remuneración en dinero, la especie es necesariamente adicional.
El salario es el elemento monetario principal en la negociación de un contrato de trabajo. Es la contraprestación en la relación bilateral, aunque en algunas ocasiones se tienen también en cuenta otras condiciones laborales como vacaciones, jornada, etc.
NOMINA
La preparación de cheques de nómina constituye una función generalmente separada del mantenimiento de los registros que muestran el salario, cargo, tiempo de trabajo, deducciones y devengados, adiciones de nómina y demás datos relacionados con el personal.
Registro y procedimiento para contabilizar la nómina
Existen pasos fundamentales que son comunes en la mayoría de las organizaciones. Uno de esos pasos, que se ejecuta al final de cada período de pago, consiste en la preparación de la nómina, debe mostrar los nombres y remuneraciones de todos los trabajadores. La información que se incluye en ese registro de nómina consiste en el salario autorizado para cada trabajador y el número de horas trabajadas, tomadas de las tarjetas de tiempo o de documentos similares. Después de separar las horas ordinarias de las extraordinarias, y de aplicar las tarifas apropiadas para cada categoría se tiene el total del salario devengado. La retención en la fuente, el aporte al seguro social y cualquier otra deducción autorizada por el trabajador se registran luego del valor devengado para obtener el valor neto...
VIDEO
receptor de video.
cinta de video.
acotante de ecenas.
rollo de ecenas de video.
VIDEO.
El vídeo,es la tecnología de la captación, grabación, procesamiento, almacenamiento, transmisión y reconstrucción por medios electrónicos digitales o analógicos de una secuencia de imágenes que representan escenas en movimiento. Etimológicamente la palabra video proviene del verbo latino video, vides, videre, que se traduce como el verbo ‘ver’. Se suele aplicar este termino a la señal de vídeo y muchas veces se la denomina «el vídeo» o «la vídeo» a modo de abreviatura del nombre completo de la misma.
La tecnología de vídeo fue desarrollada por primera vez para los sistemas de televisión, pero ha derivado en muchos formatos para permitir la grabación de vídeo de los consumidores y que además pueda ser visto a través de Internet.
En algunos países se llama así también a una grabación de imágenes y sonido en cinta magnética o en disco de láser (DVD), aunque con la aparición de estos últimos dicho término se identifica generalmente con las grabaciones anteriores en cinta magnética, del tipo VHS, BETAMAX.
Inicialmente la señal de vídeo está formada por un número de líneas agrupadas en varios cuadros y estos a la vez divididos en dos campos portan la información de luz y color de la imagen. El número de líneas, de cuadros y la forma de portar la información del color depende del estándar de televisión concreto. La amplitud de la señal de vídeo es de 1Vpp (1 voltio de pico a pico) estando la parte de la señal que porta la información de la imagen por encima de 0V y la de sincronismos por debajo el nivel de 0V. La parte positiva puede llegar hasta 0,7V para el nivel de blanco, correspondiendo a 0V el negro y los sincronismos son pulsos que llegan hasta -0,3V. En la actualidad hay multitud de estandares diferentes, especialmente en el ámbito informático.
Partes de la señal de vídeo analógica
La señal de vídeo consta de lo que se llama luminancia, crominancia y de los sincronismos. La amplitud se sitúa entre los -0,3 V del nivel inferior del sincronismo hasta los 0,7 V que corresponde al blanco. La señal propia es la referida a la luminancia con los sincronismos, a la que se le añade la señal de crominancia, con su sincronía propia, la salva de color, de tal forma que la crominancia monta encima de la luminancia.
El ancho de banda de la señal de luminancia suele ser del orden de 5 MHz, pero depende del sistema empleado. La crominancia es una señal modulada en cuadratura (es decir en amplitud y en fase). A la portadora se la denomina «subportadora de color» y es una frecuencia próxima a la parte alta de la banda, en PAL es de 4,43 MHz; evidentemente, esta frecuencia tiene relación con el resto de frecuencias fundamentales de la señal de vídeo que están referenciadas a la frecuencia de campo que toma como base, por cuestiones históricas, la frecuencia de la red de suministro eléctrico, 50 Hz en Europa y 60 Hz en muchas partes de América.
Número de imágenes por segundo
Velocidad de carga de las imágenes: número de imágenes por unidad de tiempo de video, para viejas cámaras mecánicas cargas de seis a ocho imágenes por segundo (fps) o 120 imágenes por segundo o más para las nuevas cámaras profesionales. Los estándares PAL (Europa, Asia, Australia, etc) y SECAM (Francia, Rusia, partes de África, etc) especifican 25 fps, mientras que NTSC (EE.UU., Canadá, Japón, etc) especifica 29,97 fps. El cine es más lento con una velocidad de 24fps, lo que complica un poco el proceso de transferir una película de cine a video. Para lograr la ilusión de una imagen en movimiento, la velocidad mínima de carga de las imágenes es de unas quince imágenes por segundo.
Resolución de vídeo
Comparación de resoluciones de TV.
El tamaño de una imagen de vídeo se mide en píxeles para vídeo digital, o en líneas de barrido horizontal y vertical para vídeo analógico. En el dominio digital, (por ejemplo DVD) la televisión de definición estándar (SDTV) se especifica como 720/704/640 × 480i60 para NTSC y 768/720 × 576i50 para resolución PAL o SECAM. Sin embargo, en el dominio analógico, el número de líneas activas de barrido sigue siendo constante (486 NTSC/576 PAL), mientras que el número de líneas horizontal varía de acuerdo con la medición de la calidad de la señal: aproximadamente 320 píxeles por línea para calidad VCR, 400 píxeles para las emisiones de televisión, y 720 píxeles para DVD. Se conserva la relación de aspecto por falta de píxeles "cuadrados".
Los nuevos televisores de alta definición (HDTV) son capaces de resoluciones de hasta 1920 × 1080p60, es decir, 1920 píxeles por línea de barrido por 1080 líneas, a 60 fotogramas por segundo. La resolución de vídeo en 3D para vídeo se mide en voxels (elementos de volumen de imagen, que representan un valor en el espacio tridimensional). Por ejemplo, 512 × 512 × 512 voxels, de resolución, se utilizan ahora para vídeo 3D simple, que pueden ser mostrados incluso en algunas PDA.
Espacio de color y bits por píxel
Ejemplo de color U-V plano, valor de Y=0.5.
El nombre del modelo del color describe la representación de color de video. El sistema YIQ se utilizó en la televisión NTSC. Se corresponde estrechamente con el sistema YUV utilizado en la televisión NTSC y PAL; y con el sistema YDbDr utilizado por la televisión SECAM. El número de colores distintos que pueden ser representados por un pixel depende del número de bits por pixel (bpp). Una forma de reducir el número de bits por píxel en vídeo digital se puede realizar por submuestreo de croma
Calidad de vídeo
La calidad de vídeo se puede medir con métricas formales como PSNR o subjetivas con calidad de vídeo usando la observación de expertos. La calidad de vídeo subjetiva de un sistema de procesamiento de vídeo puede ser evaluada como sigue:
•Elige las secuencias de vídeo (el SRC) a usar para la realización del test.
•Elige los ajustes del sistema a evaluar (el HRC).
•Elige un método de prueba para presentar las secuencias de vídeo a los expertos y recopilar su valoración.
•Invita a un número suficiente de expertos, preferiblemente un número no menor de 15.
•Realiza las pruebas.
•Calcula la media para cada HRC basándote en la valoración de los expertos.
Hay muchos métodos de calidad de vídeo subjetiva descritos en la recomendación BT.500.de la ITU-T. Uno de los métodos estandarizados es el Double Stimulus Impairment Scale (DSIS). En este método, cada experto ve una referencia intacta del vídeo seguida de una versión dañada del mismo video. El experto valora entonces el vídeo dañado utilizando una escala que va desde “los daños son imperceptibles” hasta “los daños son muy molestos”.
Formatos de video
Estándares de dispositivos de video Estándares de conectores de video
• Nuevos digitales:
o ATSC (EE.UU., Canada, México etc.)
o DVB-T (Europa, Broadcast de Video Digital)
o ISDB-T (Japón, Brasil, Perú, etc., Servicios Digitales Integrados de Broadcast)
• Antiguos analógicos:
o MAC (Europa - Obsoleta)
o MUSE (Japón-analog HDTV)
o NTSC (EE.UU., Canada, Japón, etc.)
o PAL (Europa, Asia, Australia, etc.)
PALplus (extensión PAL.Solo en Europa)
PAL-M (variación de PAL. Brasil)
o SECAM (FranciA, ex-URSS, Africa Central) • Video compuesto (1 RCA o BNC)
• Video componentes (3 RCA o BNC)
o D4 video connector (nuevo para HDTV)
• S-Video (para Video Separado, 1 mini-DIN)
• SCART Euroconector / Peritel (usado en Europa)
• DVI (sólo video no comprimido). HDCP opcional
• HDMI (video y audio no comprimido). HDCP mandato.
• RFs (para Radio-Frecuencia conector coaxial)
o BNC (Bayonet Niell-Concelman)
o conector C (conector Concelman)
o conector GR (conector General Radio)
o conector F (usado para instalaciones domésticas de TV en EE.UU.)
o IEC 169-2 (IEC connector, usado habitualmen en Gran Bretaña)
o conector N (conectorNiell)
o TNC connector (Threaded Niell-Concelman)
o UHF (e.g. PL-259/SO-239)
o SDI y HD-SDI
• VGA (DB-9/15 or mini sub D15)
• Mini-VGA (usado por ordenadores portátiles)
¿QUE ES ¨LCD¨?
LCD
1. Film de filtro vertical para polarizar la luz que entra.
2. Sustrato de vidrio con electrodos de Óxido de Indio ITO. Las formas de los electrodos determinan las formas negras que aparecen cuando la pantalla se enciende y apaga. Los cantos verticales de la superficie son suaves.
3. Cristales liquidos "Twisted Nematic" (TN).
4. Sustrato de vidrio con film electrodo común (ITO) con los cantos horizontales para alinearse con el filtro horizontal.
5. Film de filtro horizontal para bloquear/permitir el paso de luz.
6. Superficie reflectante para enviar devolver la luz al espectador. En un LCD retroiluminado, esta capa es reemplazada por una fuente luminosa.
Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid Crystal Display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.
¿QUE ES UNA PANTALLA DE ¨PLASMA¨?
Pantalla de plasma
Una pantalla de plasma (PDP: plasma display panel) es un tipo de pantalla plana habitualmente usada en televisores de gran formato (de 37 a 70 pulgadas). También hoy en día es utilizado en televisores de pequeños formatos, como 22, 26 y 32 pulgadas. Una desventaja de este tipo de pantallas en grandes formatos, como 42, 45, 50, y hasta 70 pulgadas, es la alta cantidad de calor que emanan, lo que no es muy agradable para un usuario que guste de largas horas de televisión o juegos de vídeo. Consta de muchas celdas diminutas situadas entre dos paneles de cristal que contienen una mezcla de gases nobles (neón y xenón). El gas en las celdas se convierte eléctricamente en plasma, el cual provoca que una substancia fosforescente (que no es fósforo) emita luz.
(((AUDIO)))
bocina, dispocitivo de audio
cableado especial para audio.
audifonos.
AUDIO.
El audio digital es la codificación digital de una señal eléctrica que representa una onda sonora. Consiste en una secuencia de valores enteros y se obtienen de dos procesos: el muestreo y la cuantificación digital de la señal eléctrica.
Muestreo digital de una señal de audio.
El muestreo consiste en fijar la amplitud de la señal eléctrica a intervalos regulares de tiempo (tasa de muestreo). Para cubrir el espectro audible (20 a 20000 Hz) suele bastar con tasas de muestreo de algo más de 40000 Hz (el estándar CD-Audio emplea una tasa un 10% mayor con objeto de contemplar el uso de filtros no ideales), con 32000 muestras por segundo se tendría un ancho de banda similar al de la radio FM o una cinta de casete, es decir, permite registrar componentes de hasta 15 kHz, aproximadamente. Para reproducir un determinado intervalo de frecuencias se necesita una tasa de muestreo de poco más del doble (Teorema de muestreo de Nyquist-Shannon). Por ejemplo en los CDs, que reproducen hasta 20 kHz, emplean una tasa de muestreo de 44,1 kHz (frecuencia Nyquist de 22,05 kHz).
Formatos de archivo de audio digital
Los archivos de audio digital almacenan toda la información que ocurra en el tiempo, el tamaño del archivo no varía así contenga 'silencio' o sonidos muy complejos. Existen muchos formatos de archivo de audio digital, que se pueden dividir en dos categorías PCM y comprimidos. Como se vio arriba el tamaño puede depender de la cantidad de canales que tenga el archivo y de la resolución (tasa de muestreo y profundidad).
Formatos PCM Los formatos PCM contienen toda la información que salió del convertidor analógico a digital, sin ninguna omisión y por eso, tienen la mejor calidad. Dentro de esta categoría se encuentran los formatos WAV, AIFF, SU, AU y RAW (crudo). La diferencia principal que tienen estos formatos es el encabezado, alrededor de 1000 bytes al comienzo del archivo.
Formatos comprimidos Para usar menos memoria que los archivos PCM existen formatos de sonido comprimidos, como por ejemplo el MP3, AAC y Ogg. Ciertos algoritmos de compresión descartan información que no es perceptible por el oído humano para lograr que el mismo fragmento de audio pueda ocupar en la memoria inclusive décima parte -o menos- de lo que ocuparía de ser PCM. La reducción en tamaño implica una pérdida de información y por esto a los formatos de este tipo se les llama formatos comprimidos con pérdida. Existen también formatos de archivo comprimido sin pérdida, dentro de los que se cuentan el FLAC y el Apple Lossless Encoder, cuyo tamaño suele ser de aproximadamente la mitad de su equivalente PCM.
Formatos descriptivos: Archivos MIDI Este formato de archivos no es precisamente de audio digital, pero sí pertenece a las tecnologías de la informática musical. El archivo MIDI no almacena "sonido grabado", sino las indicaciones para que un sintetizador o cualquier otro dispositivo MIDI "interprete" una serie de notas u otras acciones (control de un mezclador, etc.)[cita requerida]. Podemos imaginarlos como algo similar a una partitura, con los nombres de los instrumentos que hay que utilizar, las notas, tiempos y algunas indicaciones acerca de la interpretación.
IMPRESORAS
Impresora
Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen un interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.
Además, muchas impresoras modernas permiten la conexión directa de aparatos de multimedia electrónicos como las tarjetas CompactFlash, Secure Digital o Memory Stick, pendrives, o aparatos de captura de imagen como cámaras digitales y escáneres. También existen aparatos multifunción que constan de impresora, escáner o máquinas de fax en un solo aparato. Una impresora combinada con un escáner puede funcionar básicamente como una fotocopiadora.
Una impresora en color produce imágenes de múltiples colores, a partir de la combinación simultánea de al menos tres de los siguientes colores fundamentales: el magenta, el cyan y el amarillo. La cantidad depositada en la hoja de cada uno de estos, produce visualmente la sensación de todos los demás. El color negro acompaña y mejora la impresión de diversas tonalidades. Este sistema se conoce con el nombre de Sistema CMYK.
La elección del motor de impresión tiene un efecto substancial en los trabajos a los que una impresora está destinada. Hay diferentes tecnologías que tienen diferentes niveles de calidad de imagen, velocidad de impresión, coste, ruido y además, algunas tecnologías son inapropiadas para ciertos tipos de medios físicos (como papel carbón o transparencias).
Inyección de tinta (Ink Jet)
Las impresoras de inyección de tinta (Ink Jet) rocían hacia el medio cantidades muy pequeñas de tinta, usualmente unos picolitros. Para aplicaciones de color incluyendo impresión de fotos, los métodos de chorro de tinta son los dominantes, ya que las impresoras de alta calidad son poco costosas de producir. Virtualmente todas las impresoras de inyección son dispositivos en color; algunas, conocidas como impresoras fotográficas, incluyen pigmentos extra para una mejor reproducción de la gama de colores necesaria para la impresión de fotografías de alta calidad (y son adicionalmente capaces de imprimir en papel fotográfico, en contraposición al papel normal de oficina).
Las impresoras de inyección de tinta consisten en inyectores que producen burbujas muy pequeñas de tinta que se convierten en pequeñísimas gotitas de tinta. Los puntos formados son el tamaño de los pequeños pixels. Las impresoras de inyección pueden imprimir textos y gráficos de alta calidad de manera casi silenciosa.
Existen dos métodos para inyectar la tinta:
Método térmico. Un impulso eléctrico produce un aumento de temperatura (aprox. 480 °C durante microsegundos) que hace hervir una pequeña cantidad de tinta dentro de una cámara formando una burbuja de vapor que fuerza su salida por los inyectores. Al salir al exterior, este vapor se condensa y forma una minúscula gota de tinta sobre el papel. Después, el vacío resultante arrastra nueva tinta hacia la cámara. Este método tiene el inconveniente de limitar en gran medida la vida de los inyectores, es por eso que estos inyectores se encuentran en los cartuchos de tinta.
Método piezoeléctrico. Cada inyector está formado por un elemento piezoeléctrico que, al recibir un impulso eléctrico, cambia de forma aumentando bruscamente la presión en el interior del cabezal provocando la inyección de una partícula de tinta. Su ciclo de inyección es más rápido que el térmico.
Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen un interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.
Además, muchas impresoras modernas permiten la conexión directa de aparatos de multimedia electrónicos como las tarjetas CompactFlash, Secure Digital o Memory Stick, pendrives, o aparatos de captura de imagen como cámaras digitales y escáneres. También existen aparatos multifunción que constan de impresora, escáner o máquinas de fax en un solo aparato. Una impresora combinada con un escáner puede funcionar básicamente como una fotocopiadora.
Una impresora en color produce imágenes de múltiples colores, a partir de la combinación simultánea de al menos tres de los siguientes colores fundamentales: el magenta, el cyan y el amarillo. La cantidad depositada en la hoja de cada uno de estos, produce visualmente la sensación de todos los demás. El color negro acompaña y mejora la impresión de diversas tonalidades. Este sistema se conoce con el nombre de Sistema CMYK.
La elección del motor de impresión tiene un efecto substancial en los trabajos a los que una impresora está destinada. Hay diferentes tecnologías que tienen diferentes niveles de calidad de imagen, velocidad de impresión, coste, ruido y además, algunas tecnologías son inapropiadas para ciertos tipos de medios físicos (como papel carbón o transparencias).
Inyección de tinta (Ink Jet)
Las impresoras de inyección de tinta (Ink Jet) rocían hacia el medio cantidades muy pequeñas de tinta, usualmente unos picolitros. Para aplicaciones de color incluyendo impresión de fotos, los métodos de chorro de tinta son los dominantes, ya que las impresoras de alta calidad son poco costosas de producir. Virtualmente todas las impresoras de inyección son dispositivos en color; algunas, conocidas como impresoras fotográficas, incluyen pigmentos extra para una mejor reproducción de la gama de colores necesaria para la impresión de fotografías de alta calidad (y son adicionalmente capaces de imprimir en papel fotográfico, en contraposición al papel normal de oficina).
Las impresoras de inyección de tinta consisten en inyectores que producen burbujas muy pequeñas de tinta que se convierten en pequeñísimas gotitas de tinta. Los puntos formados son el tamaño de los pequeños pixels. Las impresoras de inyección pueden imprimir textos y gráficos de alta calidad de manera casi silenciosa.
Existen dos métodos para inyectar la tinta:
Método térmico. Un impulso eléctrico produce un aumento de temperatura (aprox. 480 °C durante microsegundos) que hace hervir una pequeña cantidad de tinta dentro de una cámara formando una burbuja de vapor que fuerza su salida por los inyectores. Al salir al exterior, este vapor se condensa y forma una minúscula gota de tinta sobre el papel. Después, el vacío resultante arrastra nueva tinta hacia la cámara. Este método tiene el inconveniente de limitar en gran medida la vida de los inyectores, es por eso que estos inyectores se encuentran en los cartuchos de tinta.
Método piezoeléctrico. Cada inyector está formado por un elemento piezoeléctrico que, al recibir un impulso eléctrico, cambia de forma aumentando bruscamente la presión en el interior del cabezal provocando la inyección de una partícula de tinta. Su ciclo de inyección es más rápido que el térmico.
PDA
sistema touchscreen
PDA clasico.
PDA, del inglés Personal Digital Assistant (Asistente Digital Personal), es un computador de mano originalmente diseñado como agenda electrónica (calendario, lista de contactos, bloc de notas y recordatorios) con un sistema de reconocimiento de escritura.
Hoy en día (2010) estos dispositivos, pueden realizar muchas de las funciones que hace una computadora de escritorio (ver películas, crear documentos, juegos, correo electrónico, navegar por Internet, reproducir archivos de audio, etc.) pero con la ventaja de ser portátil.
En 1990, el Atari Portfolio, aunque técnicamente clasificado como palmtop fue una muestra temprana de algunos de los más modernos dispositivos electrónicos. Le siguieron otros dispositivos como los Psion Organiser, el Sharp Wizard o la Amstrad Penpad que fueron sentando la base de las funcionalidades de las PDAs.
La primera mención formal del término y concepto de PDA (Personal Digital Assistant) es del 7 de enero de 1992 por John Sculley al presentar el Apple Newton, en el Consumer Electronics Show (Muestra de electrónica de consumo) de Las Vegas (EE.UU.). Sin embargo fue un sonoro fracaso financiero para la compañía Apple, dejando de venderse en 1998. La tecnología estaba aún poco desarrollada y el reconocimiento de escritura en la versión original era bastante impreciso, entre otros problemas. Aun así, este aparato ya contaba con todas las características de la PDA moderna: pantalla sensible al tacto, conexión a una computadora para sincronización, interfaz de usuario especialmente diseñada para el tipo de máquina, conectividad a redes vía módem y reconocimiento de escritura.
Actualmente, un PDA típico tiene una pantalla táctil para ingresar información, un slot de memoria para almacenarla y al menos Infrarrojo, Bluetooth o WiFi. El software requerido por un PDA incluye por lo general un calendario, un directorio de contactos y algún programa para agregar notas. Algunos PDAs también contienen soporte para navegar por la red y para revisar el correo electrónico
miércoles, 9 de junio de 2010
scanner
scanner de rodillo.
scanner manual.
scanner de mesa.
Un scanner es un dispositivo de entrada que digitaliza una imagen de un papel u otra superficie, y la almacena en la memoria de una computadora.
¿Cómo funciona?
Una fuente de luz se desplaza sobre el papel, iluminando la sección del papel sobre el que se desplaza.
Un motormueve la cabeza de la lectora por debajo de la pagina cuando se mueve esta captura la luz que se refleja en cada punto del papel. Los espacios en blanco reflejan mas luz que los espacios más oscuros.
Esta luz capturada es reflejada a través de un sistemade espejos que continuamente mantiene estos rayos alineados con una lente.
La lente enfoca estos rayos hacia diodos sensibles a la luz que la traducen en una corriente eléctrica. Cuanto mayor es la luz mayor será el voltaje.
Un convertidor analógico digital traduce esta señal eléctrica en una señal digital. En los scanner blanco y negro cada pixel se digitaliza en un bit, de modo tal que pueda ser blanco o negro. En los de escala de grises cada punto se digitaliza en 8 bits teniendo 256 tipos de grises. Los scanner de color verdadero, por cada pixel utilizan 24 bits, teniendo así 16 millones de colores. Estos últimos, para podertomar todos los colores realizan 3 exploraciones de la imagen, cada una pasando por un filtro distinto de color (rojo, verde, azul)
La informacióndigital es enviada a la computadora donde el software se
Tipos de scanner
Existen 3 tipos de scanner.
Manual o de media página: El dispositivo debe ser desplazado manualmente a través del papel. Por tener 10 cm de ancho no puede almacenar una página estándar (22cm x 23cm) de una sola pasada, por lo que hay que realizar 2 o más y luego unirlas por software
Ventajas: Es más económico
Desventajas: Es muy probable que la imagen salga distorsionada debido a las diferentes velocidades en la pasada y/o torcida, ya que si se dobla la mano al pasar no se escaneará derecha.
Página completa (de tapa): Son parecidos a una pequeña fotocopiadora. La hoja se coloca en el scanner y la luz rastreadora se encarga de explorar la imagen automáticamente.
Ventajas: La imagen se escanea de manera casi perfecta ya que no hay posibilidad de un error humano (es automático). Además se puede escanear la hoja entera de una sola pasada.
Desventajas: Son más costosos que los scanners manuales. Las hojas pueden llegar a colocarse torcidas.
Scanner de página completa para insertar hojas sueltas: La hoja a ser escaneada se inserta por una ranura y un mecanismo de arranque la hace pasar frente a un sistema de barrido fijo. Por lo tanto, es la hoja la que se desplaza y no el cabezal de lectura.
Ventajas: No hay posibilidad de que la hoja se posicione torcida ya que se inserta en una ranura. Al igual que en el de página completa, la imagen se escanea de manera casi perfecta y de una sola pasada
Desventajas: Solamente se pueden escanear hojas sueltas, de modo que las hojas de libros no pueden ser escaneadas.
Resolución
La resolución de un scanner indica la cantidad de puntos que este puede explorar en cada pulgada de una imagen. La resolución se mide en PPP (puntos por pulgada) o DPI (dots per inch)
Por ejemplo si un scanner posee una resolución de 400 DPI y se lo utiliza para digitalizar una imagen de 2" x 3" la imagen que se generara en la computadora será de 800 pixeles x 1200 pixeles. Con un scanner de esta resolución por pulgada cuadrada se exploran 160.000 pixeles (puntos)
A mayor resolución mayor es la calidadde la imagen en la pantalla y la cantidad de detalles que se capturan de ella.
Existen dos tipos de resolución:
Optica: Es la resolución máxima real del scanner.
Interpolada: Es una resolución que se obtiene mediante cálculos de soft a partir de la resolución óptica, mediante cálculos matemáticos (obtiene un promedio de las tonalidades de los puntos). A partir de estos cálculos, crea puntos intermedios entre los puntos realmente escaneados en la imagen para suavisarla. Esto sirve, entre otras cosas, a la hora de aumentar el tamaño de la imagen escaneada.
¿Cómo funciona?
Una fuente de luz se desplaza sobre el papel, iluminando la sección del papel sobre el que se desplaza.
Un motormueve la cabeza de la lectora por debajo de la pagina cuando se mueve esta captura la luz que se refleja en cada punto del papel. Los espacios en blanco reflejan mas luz que los espacios más oscuros.
Esta luz capturada es reflejada a través de un sistemade espejos que continuamente mantiene estos rayos alineados con una lente.
La lente enfoca estos rayos hacia diodos sensibles a la luz que la traducen en una corriente eléctrica. Cuanto mayor es la luz mayor será el voltaje.
Un convertidor analógico digital traduce esta señal eléctrica en una señal digital. En los scanner blanco y negro cada pixel se digitaliza en un bit, de modo tal que pueda ser blanco o negro. En los de escala de grises cada punto se digitaliza en 8 bits teniendo 256 tipos de grises. Los scanner de color verdadero, por cada pixel utilizan 24 bits, teniendo así 16 millones de colores. Estos últimos, para podertomar todos los colores realizan 3 exploraciones de la imagen, cada una pasando por un filtro distinto de color (rojo, verde, azul)
La informacióndigital es enviada a la computadora donde el software se
Tipos de scanner
Existen 3 tipos de scanner.
Manual o de media página: El dispositivo debe ser desplazado manualmente a través del papel. Por tener 10 cm de ancho no puede almacenar una página estándar (22cm x 23cm) de una sola pasada, por lo que hay que realizar 2 o más y luego unirlas por software
Ventajas: Es más económico
Desventajas: Es muy probable que la imagen salga distorsionada debido a las diferentes velocidades en la pasada y/o torcida, ya que si se dobla la mano al pasar no se escaneará derecha.
Página completa (de tapa): Son parecidos a una pequeña fotocopiadora. La hoja se coloca en el scanner y la luz rastreadora se encarga de explorar la imagen automáticamente.
Ventajas: La imagen se escanea de manera casi perfecta ya que no hay posibilidad de un error humano (es automático). Además se puede escanear la hoja entera de una sola pasada.
Desventajas: Son más costosos que los scanners manuales. Las hojas pueden llegar a colocarse torcidas.
Scanner de página completa para insertar hojas sueltas: La hoja a ser escaneada se inserta por una ranura y un mecanismo de arranque la hace pasar frente a un sistema de barrido fijo. Por lo tanto, es la hoja la que se desplaza y no el cabezal de lectura.
Ventajas: No hay posibilidad de que la hoja se posicione torcida ya que se inserta en una ranura. Al igual que en el de página completa, la imagen se escanea de manera casi perfecta y de una sola pasada
Desventajas: Solamente se pueden escanear hojas sueltas, de modo que las hojas de libros no pueden ser escaneadas.
Resolución
La resolución de un scanner indica la cantidad de puntos que este puede explorar en cada pulgada de una imagen. La resolución se mide en PPP (puntos por pulgada) o DPI (dots per inch)
Por ejemplo si un scanner posee una resolución de 400 DPI y se lo utiliza para digitalizar una imagen de 2" x 3" la imagen que se generara en la computadora será de 800 pixeles x 1200 pixeles. Con un scanner de esta resolución por pulgada cuadrada se exploran 160.000 pixeles (puntos)
A mayor resolución mayor es la calidadde la imagen en la pantalla y la cantidad de detalles que se capturan de ella.
Existen dos tipos de resolución:
Optica: Es la resolución máxima real del scanner.
Interpolada: Es una resolución que se obtiene mediante cálculos de soft a partir de la resolución óptica, mediante cálculos matemáticos (obtiene un promedio de las tonalidades de los puntos). A partir de estos cálculos, crea puntos intermedios entre los puntos realmente escaneados en la imagen para suavisarla. Esto sirve, entre otras cosas, a la hora de aumentar el tamaño de la imagen escaneada.
CAMARAS DIGITALES
Una cámara digital es una cámara fotográfica que, en vez de capturar y almacenar fotografías en películas fotográficas como las cámaras fotográficas convencionales, lo hace digitalmente mediante un dispositivo electrónico, o en cinta magnética usando un formato analógico como muchas cámaras de video.
Los conceptos de digitalizar imágenes en escáneres y convertir señales de video a digital anteceden al concepto de tomar cuadros fijos digitalizando así señales de una matriz de elementos sensores discretos. Eugene F. Lally del Jet Propulsion Laboratory publicó la primera descripción de cómo producir fotos fijas en un dominio digital usando un fotosensor en mosaico.El propósito era proporcionar información de navegación a los astronautas a bordo durante misiones espaciales. La matriz en mosaico registraba periódicamente fotos fijas de las localizaciones de estrellas y planetas durante el tránsito y cuando se acercaba a un planeta, proporcionaba información adicional de distancias para el orbitaje y como guía para el aterrizaje. El concepto incluyó elementos de diseño que presagiaban la primera cámara fotográfica digital.
La resolución de una cámara fotográfica digital está limitada por el sensor de la cámara (generalmente un CCD o un Sensor CMOS) que responde a las señales de luz, substituyendo el trabajo de la película en fotografía tradicional. El sensor se compone de millones de “cubos” que se cargan en respuesta a la luz. Generalmente, estos cubos responden solamente a una gama limitada de longitudes de onda ligeras, debido a un filtro del color sobre cada uno. Cada uno de estos cubos se llama un píxel, y se utiliza un algoritmo de mosaicismo e interpolación para unir la imagen de cada gama de longitud de onda por pixel en una imagen del RGB donde están las tres imágenes por píxel para representar un color completo.
Los dispositivos CCD transportan la carga a través del chip hasta un conversor analógico-digital. Éste convierte el valor de cada uno de los píxeles en un valor digital midiendo la carga que le llega. Dependiendo del número de bits del conversor obtendremos una imagen con mayor o menor gama de color. Por ejemplo, si se utilizase un sólo bit tendríamos valores de 0 y 1, y sólo podríamos representar presencia o ausencia de luz, lo que supondría una imagen en blanco y negro puro.
Por otro lado, los aparatos CMOS contienen varios transistores en cada píxel. El proceso de conversión digital se produce en la propia estructura del sensor, por lo que no se necesita un conversor añadido. Su proceso de fabricación es más sencillo, y hace que las cámaras que utilizan esta tecnología resulten más baratas.
La cantidad de pixeles resultante en la imagen determina su tamaño. Por ejemplo una imagen de 640 pixeles de ancho por 480 pixeles de alto tendrá 307,200 pixels, o aproximadamente 307 kilopixeles; una imagen de 3872 pixeles de alto por 2592 pixeles de ancho tendrá 10.036.224 pixeles, o aproximadamente 10 megapixeles.
Los conceptos de digitalizar imágenes en escáneres y convertir señales de video a digital anteceden al concepto de tomar cuadros fijos digitalizando así señales de una matriz de elementos sensores discretos. Eugene F. Lally del Jet Propulsion Laboratory publicó la primera descripción de cómo producir fotos fijas en un dominio digital usando un fotosensor en mosaico.El propósito era proporcionar información de navegación a los astronautas a bordo durante misiones espaciales. La matriz en mosaico registraba periódicamente fotos fijas de las localizaciones de estrellas y planetas durante el tránsito y cuando se acercaba a un planeta, proporcionaba información adicional de distancias para el orbitaje y como guía para el aterrizaje. El concepto incluyó elementos de diseño que presagiaban la primera cámara fotográfica digital.
La resolución de una cámara fotográfica digital está limitada por el sensor de la cámara (generalmente un CCD o un Sensor CMOS) que responde a las señales de luz, substituyendo el trabajo de la película en fotografía tradicional. El sensor se compone de millones de “cubos” que se cargan en respuesta a la luz. Generalmente, estos cubos responden solamente a una gama limitada de longitudes de onda ligeras, debido a un filtro del color sobre cada uno. Cada uno de estos cubos se llama un píxel, y se utiliza un algoritmo de mosaicismo e interpolación para unir la imagen de cada gama de longitud de onda por pixel en una imagen del RGB donde están las tres imágenes por píxel para representar un color completo.
Los dispositivos CCD transportan la carga a través del chip hasta un conversor analógico-digital. Éste convierte el valor de cada uno de los píxeles en un valor digital midiendo la carga que le llega. Dependiendo del número de bits del conversor obtendremos una imagen con mayor o menor gama de color. Por ejemplo, si se utilizase un sólo bit tendríamos valores de 0 y 1, y sólo podríamos representar presencia o ausencia de luz, lo que supondría una imagen en blanco y negro puro.
Por otro lado, los aparatos CMOS contienen varios transistores en cada píxel. El proceso de conversión digital se produce en la propia estructura del sensor, por lo que no se necesita un conversor añadido. Su proceso de fabricación es más sencillo, y hace que las cámaras que utilizan esta tecnología resulten más baratas.
La cantidad de pixeles resultante en la imagen determina su tamaño. Por ejemplo una imagen de 640 pixeles de ancho por 480 pixeles de alto tendrá 307,200 pixels, o aproximadamente 307 kilopixeles; una imagen de 3872 pixeles de alto por 2592 pixeles de ancho tendrá 10.036.224 pixeles, o aproximadamente 10 megapixeles.
Suscribirse a:
Entradas (Atom)